GENERAL INFORMATION INDEX

PAGE	DATE	SERIES	DESCRIPTION
GEN-2	11/12/12	_	Reference Publications
GEN-3	04/30/15	-	Contacts for Standards
GEN-4	04/16/96	_	Metric Equivalent Chart (1 of 2)
GEN-5	04/16/96	_	Metric Equivalent Chart (2 of 2)
GEN-6	04/16/96	-	Selected Rules for Communicating in the SI Metric System
GEN-7	04/16/96	_	Surface Roughness Conversion
GEN-8	06/11/08	-	Component Identification, Page Formatting, Logsheet, Safety Color Paint Specifications
GEN-9	04/30/15	-	NAAMS Search Functions
GEN-10	04/30/15	-	NAAMS Search Functions
GEN-11	04/30/15	_	Frequently Asked Questions

тм

Assembly

GLOBAL STANDARD COMPONENTS

PUBLICATIONS FOR DRAFTING AND COMPONENT STANDARDS

- Metric Dimensioning and Tolerances ANSI Y14.5 2009
- Metric Limits and Fits ANSI B4.2 1978
- Units and Metric/U.S. Customary Conversion NAAMS, Pages GEN-4, 5, 6 and 7

тм

Assembly

- DIN 74 Form K SCR.: C' BORE
- Dowels ISO-8735 1987
- Preferred Numbers ISO 497 1973 R'10 Series
- Letter and Geometric Symbol References ANSI Y10, Y32 Series
- Single Rod Cylinders ISO 6431, ISO 3320 1992
- Cylinder Rod Envelope and Mounting Specifications VDMA 24 562 1992
- Cylinder Rod Thread Specifications DIN ISO 4395 1985

Α

CONTACTS FOR STANDARDS

GLOBAL STANDARD COMPONENTS

Assembly

тм

<u>04/30/1</u>5

Copies of referenced standards are available from the following sources:

ANSI

American National Standards Instuite 25 West 43rd Street, 4th floor New York, NY 10036-7417

Phone: (212) 642-4900 FAX: (212) 398-0023

ISO

American National Standards Instuite 25 West 43rd Street, 4th floor New York, NY 10036-7417

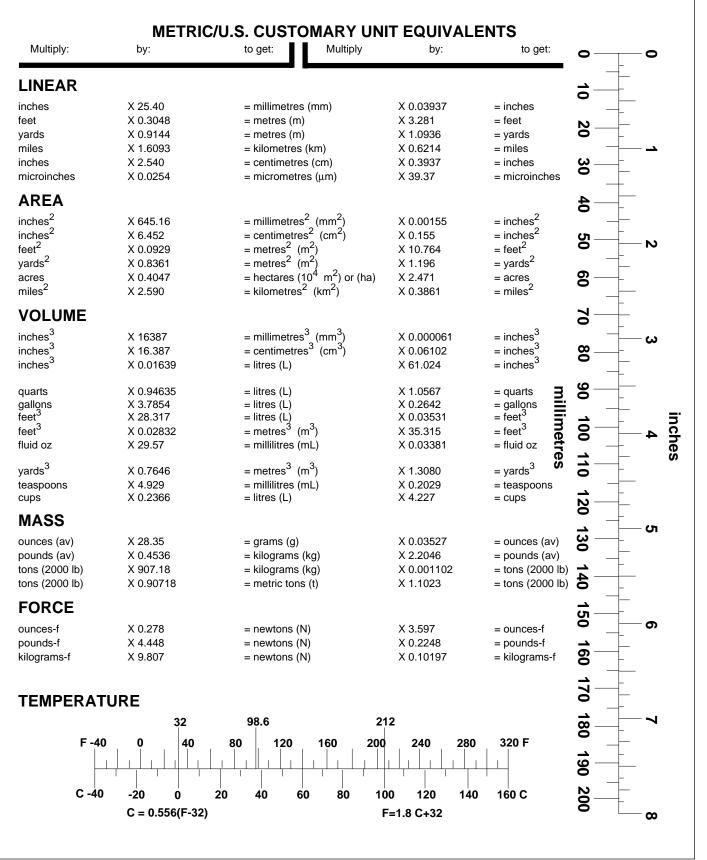
Phone: (212) 642-4900 FAX: (212) 398-0023

DIN

DIN Deutsches Institut für Normung e. V. Am DIN-Platz Burggrafenstraße 6 10787 Berlin Germany Phone: +49 30 2601-0 FAX: +49 30 2601-1231

VDMA

VDMA P.O. Box 710864 D-60498 Frankfurt, Germany Attn.: Mr Brodmann


Phone: 011-49-69-660-3252 FAX: 001-49-69-660-3816 Α

METRIC EQUIVALENT CHART (1 OF 2)

GLOBAL STANDARD COMPONENTS

Assembly

04/16/96

METRIC EQUIVALENT CHART (2 OF 2)

INDEAL STANDARD COMPONENTS

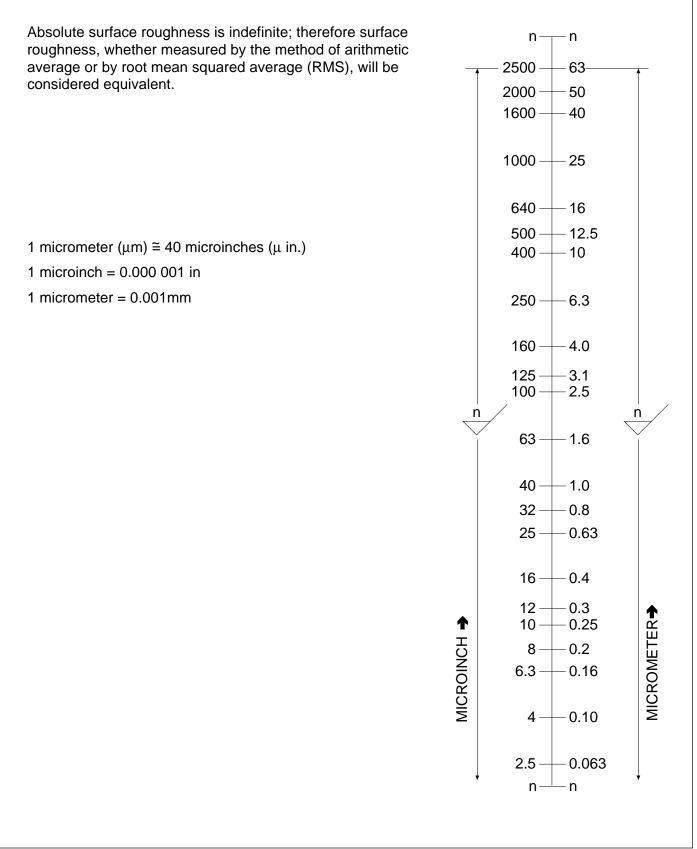
Assembly

04/16/96

Multiply:	by:	to get: Multip	bly by:	to get:	• • -	- 0
	FION (Standard gra	$avity = 9.807 \text{ m/s}^2$			10	
eet/sec ²	X 0.3048	=metres/sec ² (m/s ²)	X 3.281	= feet/sec ²	20	Ļ
inches/sec ² sec ²	X 0.0254	=metres/sec ² (m/s ²)	X 39.37	= inches/		_
	WORK (watt-se	cond = joule = newton-metre)			30	
foot-pounds pounds	X 1.3558	= joules (J)	X 0.7376	= foot-	40	
calories (heat) (int'l)	X 4.187	= joules (J)	X 0.2388	= calories		-
Btu (int'l)	X 1055	= joules (J)	X 0.000948	= Btu (int'l)	-	-
watt-hours hours	X 3600	= joules (J)	X 0.0002778	= watt-	60	-
kilowatt-hours hours	X 3.600	= megajoules (MJ)	X 0.2778	= kilowatt-	70	-
DDESCUDE					_	ω
		newton/sq metre = pascal)	¥ 0 000 /		80 —	+
inches Hg(60°F) pounds/sq in sq in	X 3.377 X 6.895	= kilopascals (kPa) = kilopascals (kPa)	X 0.2961 X 0.145	= inches Hg = pounds/	_ (0	
pounds/sq in sq in	X .06895	= Bars	X 14.504	= pounds/	= _	-
inches H ₂ O(60°F) H ₂ O	X 0.2488	= kilopascals (kPa)	X 4.0193	= inches	100 imetr	4
bars	X 100	= kilopascals (kPa)	X 0.01	= bars	110 res	<u> </u>
pounds/sq ft sq ft	X 47.88	= pascals (Pa)	X 0.02088	= pounds/	• •	[
kgf/cm ²	X 98.07	= kilopascals (kPa)	X 0.010197	= kgf/cm ²	120	 -
POWER					130	ິບາ
horsepower power	X 0.746	= kilowatts (kW)	X 1.34	= horse-		-
ft-lbf/min	X 0.0226	= watts (W)	X 44.25	= ft-lbf/min	140	
TORQUE					150	_ ດ
pound-inches inches	X 0.11298	= newton-metres (Nm)	X 8.851	= pound-	160	
pound-feet feet	X 1.3558	= newton-metres (Nm)	X 0.7376	= pound-		-
kgf-cm	X 0.09807	= newton-metres (Nm)		= kgf-cm	170	Ē
kgf-m	X 9.807	= newton-metres (Nm)	X 0.10197	= kgf-m) 180 	<u> </u>
						 -
					190	<u> </u>
					200	—

SELECTED RULES FOR COMMUNICATING IN THE SI METRIC SYSTEM

GLOBAL STANDARD COMPONENTS


Assembly

04/16/96

		Examples:		
	ICATION OF PREFIXES	CORRECT	INCORRECT	
1.	Approved prefixes (instead of powers of ten) should be used to indicate orders of magnitude.	12.3 km	12.3x10 ³ m	
2.	Prefixes must be combined with units and not used alone	kilogram	kilo	
3.	Avoid using multiple prefixes.	pF	$\mu\mu$ F	
4.	Avoid mixing prefixes within a text of drawing.	1000 mm 10mm	100 cm 10mm	
5.	Choose prefixes representing steps of 1000.	mN,N,kN		
6.	Choose prefixes giving numerical values of 0.1 through 1000.	3.94 mm	0.003 94 m	
UN	CTUATION			
1.	The decimal sign is the dot on the line.	25.26	25,26 or 25 26	
2.	Periods should not be used after symbols for SI units except at the end of a sentence.	ms	m.s or ms.	
3.	Separate symbols from numerical values by a space	21 m	21m	
PEI 1.	LING AND CAPITALIZATION Names of SI units and prefixes are not capitalized except at the beginning of a sentence. (Exceptions: See items 2 and 3 below.)	metre kilo	Metre Kilo	
2.	Symbols for SI units derived from proper names have the first letter capitalized; symbols for other units are lower case (Except L for litre).	Pa, J cd	pa, j Cd	
3.	Symbols for prefixes are not capitalized except for T, G and M.	m (for milli) M (for mega)		
4.	Symbols for units and prefixes are always written in singular form.	10 metres=10 m	10 metres=10 m	
5.	Place the symbol for a prefix immediately before the unit which it modifies.	km	k m	
6.	Avoid hand-drawn Greek letters (Ω , $\mu,$ etc.); Spell out words where possible.	microsecond for μs ohm for Ω		
Г Н І 1.	ER USAGE CONVENTIONS Express metric figures with one digit on either side of the decimal point.			
	 a. For whole numbers, where a decimal is used it should be followed by a zero. 	25.0 kg or 25 kg	25. kg	
	 When the value is less than unity, the decimal should be preceded by a zero. 	0.25 kg	.25 kg	
2.	Numbers having four or more digits should be placed in groups of three separated by a space; do not use commas (some countries use a comma for the decimal point).	11 532	11,532	
	For four digits, the space is optional.	1532	1,532	
3.	Avoid mixing customary units and SI units.	kg/m ³	kg/ft ³	
4.	When expressing compound units in symbolic form, use nothing between the units or a raised dot to indicate the product. Do not use an "x".	mkg/m∙kg	m x kg	

SURFACE ROUGHNESS CONVERSION

COMPONENT IDENTIFICATION, PAGE FORMATTING, LOGSHEET

COMPONENT IDENTIFICATION

Each part to be marked with the manufacturers identification and NAAMS code where possible.

PAGE FORMATTING

In the previous published version of these standards, odd numbered (right hand) pages were offset to the right and even numbered (left hand) pages offset to the left to allow for binding. The pages are now centered. This format allows the pages to be punched in the left margin for insertion into a ring binder. Changes since the original publication are indicated by capital letters placed in boxes in the right hand margins. The latest revision date is indicated in the title block of each page.

LOGSHEET

The logsheet allows the user to determine the latest change to any standard by referring to the date in the last column. Individual pages are accessed by clicking onto the page number in the first column. The change level (A, B, etc.) and a brief description of each change are listed in their respective columns for each page.

SAFETY COLOR PAINT SPECIFICATIONS

The following safety paint colors are in accordance with SAE\USCAR-9 paint specifications, and are the recommended colors for NAAMS components where safety paint is specified.

Color	Munsell Number
Safety Black	N 0.75
Safety Blue	2.5PB 3/10
Safety Green	7.5G 4/8
Safety Orange	3.75YR 6/14
Safety Purple	10P 5/10
Safety Red	7.5R 4/14
Safety White	N 9.5
Safety Yellow	3.75Y 8.5/12

В

Α

NAAMS SEARCH FUNCTIONS

GLOBAL STANDARD COMPONENTS

Assembly

тм

NAAMS documentation is published in PDF format.

Search Functions are executed utilizing the core functionality that comes with Adobe software.

C	OMPONEN	ITS INDEX	Assembly 08/13/	07
PAGE	DATE	"A" HEIGHT	DESCRIPTION	
<u>E-1</u>	08/13/07	150 000	Riser Angle Brackets Components Index	
E-2	06/05/96	450-800 mm	Maximum Recommended Loads	
<u>E-3</u>	08/18/03	450-800 mm	Maximum Recommended Loads	
E-4	08/13/07	100-400 mm	Riser Angle Bracket	
E-4.1	09/24/04	100-400 mm	Riser Angle Bracket	
E-5	08/13/07	100-800 mm	Riser Angle Bracket	
<u>E-6</u>	09/24/04	100-800 mm	Riser Angle Bracket	
E-7	08/13/07	100-400 mm	Riser Angle Bracket	
E-8	08/13/07	100-400 mm	Riser Angle Bracket	
<u>E-9</u>	08/13/07	450-800 mm	Riser Angle Bracket	
E-10	09/24/04	450-800 mm	Riser Angle Bracket	
E-11	08/13/07		Riser Angle Bracket	
E-12	08/13/07	150-500 mm	Stack Riser	
E-13	08/13/07	400&800 mm	Stack Riser	
E-14	03/01/99		Maximum Recommended Loads	
E-15	08/18/03	300-500 mm	Maximum Recommended Loads	
E-16	08/18/03	550-750 mm	Maximum Recommended Loads	
E-17	08/18/03	800-1400 mm	Maximum Recommended Loads	
E-18	08/18/03	1450-1600 mm	Maximum Recommended Loads	
E-19	08/13/07		Tubular Riser Construction	
E-20	07/15/03	CTIVATE ADO	DBE SEARCH FUNTION	
E-21	07/15/03	BY SELEC	TING THIS ICON	
E-22	09/24/04			
E-23	07/15/03	(SEE	NEXT PAGE) ded Lo	ads
E-24	10/06/03	850-1600	Tubular Riser Maximum Recommended Lo	ads
E-25	08/13/07	100-400	Riser Angle Bracket - Aluminum	
E-26	08/01/03	100-400	Riser Angle Bracket - Aluminum	
E-27	08/01/03	100-400	Maximum Recommended Loads	
E-28	08/01/03	100-400	Maximum Recommended Loads	
E-29	07/09/07	60-600	Riser for Pass Takes	
E-30	05/08/07	- 60-600 J	ivat for Pase Pables.	

					GLOBAL STANDARD COMPONENTS		
	NAAMS SEARCH FUNCTIONS			тм			
	FUN)	Ass	sembly	04/30/1	
	E THE TOOLBAR	IS ACTIVAT	ED, USE		AR ICON TOOL TO SEAF	RCH FOR	
NAA	WIS CODES.				1		
7 mm							
	www.naamsstandards.org ×			11.00		Contraction of the	
← -	C 🗋 www.naamssta	ndards.org/Standa	rds/chapters/	assembly/E.pdf	\frown		
8	🏟 🖶 🖻 🖂 🏟	5 / 31 1	$\bigcirc \bigcirc \bigcirc \bigcirc$	 80.4% 80.4% 	📓 🖬 📙 🖪 🔂 📄 🛃		
	Search 📢 🕨				\bigcirc		
1					GLOBAL STANDARD COMPON	ENTS	
9	What word or phrase would you like to search for?	RISE	R ANGL	E BRACKETS	NAAMS 🚳		
ĥ	AAB200	CC	OMPONE	NTS INDEX	Assembly 08/	13/07	
		PAGE	DATE	"A" HEIGHT	DESCRIPTION		
	Case-Sensitive	<u>E-1</u> E-2	08/13/07 06/05/96	450-800 mm	Riser Angle Brackets Components Index Maximum Recommended Loads		
	Include Bookmarks	E-3	08/18/03	450-800 mm	Maximum Recommended Loads		
	Include Comments	E-4	08/13/07	100-400 mm	Riser Angle Bracket		
	Search	E-4.1	09/24/04	100-400 mm	Riser Angle Bracket		
		E-5	08/13/07	100-800 mm	Riser Angle Bracket		
		E-6	09/24/04	100-800 mm	Riser Angle Bracket		
		E-7	08/13/07	100-400 mm	Riser Angle Bracket		
		E-8	08/13/07	100-400 mm	Riser Angle Bracket		
		E-9	08/13/07	450-800 mm	Riser Angle Bracket		
		<u>E-10</u>	09/24/04	450-800 mm	Riser Angle Bracket		
		E-11	08/13/07		Riser Angle Bracket		
		<u>E-12</u>	08/13/07	150-500 mm	Stack Riser		
		<u>E-13</u>	08/13/07	400&800 mm	Stack Riser		
		<u>E-14</u>	03/01/99		Maximum Recommended Loads		
		<u>E-15</u>	08/18/03	300-500 mm	Maximum Recommended Loads		
		<u>E-16</u>	08/18/03	550-750 mm	Maximum Recommended Loads		
		<u>E-17</u>	08/18/03	800-1400 mm	Maximum Recommended Loads		
		<u>E-18</u>	08/18/03	1450-1600 mm	Maximum Recommended Loads		
		<u>E-19</u>	08/13/07		Tubular Riser Construction		
		<u>E-20</u>	07/15/03	850-1600	Tubular Riser		
		<u>E-21</u>	07/15/03	850-1600	Tubular Riser		
		<u>E-22</u> <u>E-23</u>	09/24/04 07/15/03	850-1600	Tubular Riser Tubular Riser Maximum Recommended	Loads	
		E-20 E-24	10/06/03	850-1600	Tubular Riser Maximum Recommended		
		E-24 E-25	08/13/07	100-400	Riser Angle Bracket - Aluminum		
		E-26	08/01/03	100-400	Riser Angle Bracket - Aluminum		
		<u>E-27</u>	08/01/03	100-400	Maximum Recommended Loads		
		E-28	08/01/03	100-400	Maximum Recommended Loads		
		E-29	07/09/07	60-600	Riser for Pass Tables		
	Show More Options	E-30	05/08/07	60-600	Riser for Pass Tables		
	Find a word in the	@1997 Auto/Ste	el Partnership	www.naamsstandards.org	This document is Uncontrolled when printed.	E-1	

FREQUENTLY ASKED QUESTIONS

FREQUENTLY ASKED QUESTIONS:

Q: I HAVE A NAAMS CODE AND CANNOT LOCATE IT ON THE WEB SITE. DOES THIS NUMBER EXIST?

A: USE THE SEARCH FUNCTION AS DEFINED ON THE SHEETS GEN - 9 AND GEN - 10 ON ALL CHAPTERS THAT MAY CONTAIN THE COMPONENT. IF THE NUMBER CAN NOT BE LOACTED ON THE WEB SITE, **IT DOES NOT EXIST.**

Q: IF A DISCONTINUED NAAMS CODE EXISTS ON THE WEBSITE, ARE THERE REPLACEMNET CODES?

A: WHEN NAAMS CODES ARE DISCONTINUED, THEY REMAIN ON THE WEB SITE FOR LEGACY TOOLING PURPOSES. DISCONTINUED COMPONENTS CAN STILL BE MANUFACTURED. A SIMILAR NEW PART MAY EXIST.

Q: SOME PARTS HAVE A "M" SUFFIX, WHILE OTHERS DO NOT. WHAT IS THE DIFFERENCE?

A: FOR THE PART CATEGORIES THAT HAVE INCH AND METRIC PARTS THE "M" SUFFIX SIGNIFIES THE PART IS A METRIC COMPONENT.